

LA-UR-19-22968

Approved for public release; distribution is unlimited.

Title: Radiation Detection Theory

Author(s): Duncan, Victoria Stephanie

Intended for: Training Presentation

Issued: 2019-04-02

Radiation Detection Theory

Lesson Objectives

- 1. Identify **four types** of radiation detectors
- 2. Explain the operational theory of each detector
- 3. Identify the types of radiation each detector detects
- 4. Identify each detector's dose rate range
- Identify the advantages and disadvantages of each detector

Agenda

- Gas Filled Detectors
- Scintillators
- Semiconductors
- Isotope Identification

Detector Types

Gas Filled

- Ion Chamber
- Proportional Counter (Neutrons!)
- GM

Scintillator

- Nal
- Csl
- ZnS

Semiconductor

HPGe

Gas Filled Detectors

Version 1.1_03-27-19 5

Gas Filled Detectors (cont'd)

Ion Chamber

- No gas amplification
- Good accuracy
- Drop in sensitivity below 50-100 keV photons

Fluke 451B

- Non-pressurized
- Dose rate range: 0-500 mSv/hr
- Radiation detected:
 - Alpha > 7 MeV
 - Beta > 100 keV
 - Gamma > 7 keV
- Accuracy: +/- 10% for Cs-137

Proportional Counter

- Gas amplification occurs
- Charges collected are proportional to incident energy
- Can differentiate between radiation types
- RF is difficult to shield

Proportional Counter (cont'd)

- Neutrons don't interact readily with all gases
- ³He

$$_{2}^{3}He+_{0}^{1}n\rightarrow_{1}^{3}H+_{1}^{1}p$$

- Advantages: High efficiency, ruggedness
- Disadvantages: DOT shipping issues, RF and gamma interference

Proportional Counter (cont'd)

Version 1.1_03-27-19

11

Geiger-Mueller Tube

Geiger discharge

- Very high dead time
- Can paralyze in high radiation fields
- Primarily used for dosimetry applications

Version 1.1_03-27-19

Scintillators

Ideal scintillation material characteristics

- High light output
- Short decay time
- Ability to be manufactured into usable sizes

Photomultiplier Tube

Photomultiplier Tube

- Advantages: Large area, good noise characteristics
- Disadvantages: Ruggedness issues

15

CsI (TI) vs NaI (TI)

Csl (Tl)

- High light output, long decay time
- Expensive
- Slightly hygroscopic
- 8% energy resolution

Nal (TI)

- High light output, short decay time
- Inexpensive
- Hygroscopic
- 7% energy resolution

HRM

- Csl Scintillator and He-3 Proportional Counter
- Dose rate range
 - Standard: 0-120 μSv/hr
 - High Range: 120 μSv/hr-880 mSv/hr
- Radiation detected
 - Neutrons
 - Gamma > 45 keV

IdentiFINDER

- Scintillator, He-3 Proportional Counter, and GM tube for higher dose rates
- Dose rate range
 - Scintillator: 0-250 μSv/hr
 - GM Tube: 0-10 mSv/hr
- Radiation detected
 - Neutrons
 - Gamma: 20 keV-3 MeV (claimed)

ZnS (Ag)

- Used for alpha detection
- Very low light conversion efficiency for fast electrons
- Opaque crystalline powder
 - Limits use to thin screens

FH-40 Alpha/Beta Probe

Efficiency

- Alpha (Am-241): 36%

- Beta (Co-60): 23%

- Beta (Sr-90): 49%

Semiconductors

- Require much less energy to produce charge carriers than scintillators
 - ~3 eV vs ~33 eV

HPGe

- Great energy resolution
- Must be cooled
 - Liquid Nitrogen or mechanically cooled
 - Adds size and weight
 - Can be allowed to warm to room temperature between uses

ORTEC Detective

- HPGe, He-3 Proportional Counter, GM tube
- Dose Rate Range
 - HPGe: 0-20 μSv/hr
 - GM Tube: 0-10 Sv/hr
- Radiation Detected
 - Neutron
 - Gamma

Isotope Identification

- Each isotope has a "finger print" of emissions
- Exceptions
 - Pure Beta Emitters
 - Positron Emitters
 - Neutron Emitters
- Solid state detectors build a spectrum as they collect

Spectrum Collection

- An interaction occurs in the detector head
- 2. That interaction is converted into a pulse proportional to the energy
- 3. The Multi Channel Analyzer bins this information
- 4. Peaks are forms for analysis

Energy Resolution

- Measure of energy peaks
- Full-width at half-maximum
- Peaks must be at least1 FWHM apart to distinguish

Energy Resolution (cont'd)

Comparison between Nal and LaBr₃

Version 1.1_03-27-19

Spectrum Noise

Interactions with surrounding materials and the detection medium create noise

Lesson Summary

- Four Detector Types: Ion Chamber, Proportional Counter, Scintillator, Semiconductor
- Know your instrument
 - Range
 - Advantages
 - Limitations
- Isotope Identification
 - Resolution
 - Spectrum features

Questions?

